Discrete Lagrangian and Hamiltonian Mechanics on Lie Groupoids

نویسنده

  • JUAN C. MARRERO
چکیده

The purpose of this paper is to describe geometrically discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids. From a variational principle we derive the discrete Euler-Lagrange equations and we introduce a symplectic 2-section, which is preserved by the Lagrange evolution operator. In terms of the discrete Legendre transformations we define the Hamiltonian evolution operator which is a symplectic map with respect to the canonical symplectic 2-section on the prolongation of the dual of the Lie algebroid of the given groupoid. The equations we get include as particular cases the classical discrete Euler-Lagrange equations, the discrete Euler-Poincaré and discrete Lagrange-Poincaré equations. Our results can be important for the construction of geometric integrators for continuous Lagrangian systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey of Lagrangian Mechanics and Control on Lie Algebroids and Groupoids

In this survey, we present a geometric description of Lagrangian and Hamiltonian Mechanics on Lie algebroids. The flexibility of the Lie algebroid formalism allows us to analyze systems subject to nonholonomic constraints, mechanical control systems, Discrete Mechanics and extensions to Classical Field Theory within a single framework. Various examples along the discussion illustrate the soundn...

متن کامل

Discrete Hamilton–pontryagin Mechanics and Generating Functions on Lie Groupoids

We present a discrete analog of the recently introduced Hamilton– Pontryagin variational principle in Lagrangian mechanics. This unifies two, previously disparate approaches to discrete Lagrangian mechanics: either using the discrete Lagrangian to define a finite version of Hamilton’s action principle, or treating it as a symplectic generating function. This is demonstrated for a discrete Lagra...

متن کامل

Symmetry Reduction of Discrete Lagrangian Mechanics on Lie Groups

For a discrete mechanical system on a Lie group G determined by a (reduced) Lagrangian l we define a Poisson structure via the pull-back of the Lie-Poisson structure on the dual of the Lie algebra g∗ by the corresponding Legendre transform. The main result shown in this paper is that this structure coincides with the reduction under the symmetry group G of the canonical discrete Lagrange 2-form...

متن کامل

. SG ] 1 5 Ju n 19 99 Discrete Lagrangian reduction , discrete Euler – Poincaré equations , and semidirect products

A discrete version of Lagrangian reduction is developed in the context of discrete time Lagrangian systems on G×G, where G is a Lie group. We consider the case when the Lagrange function is invariant with respect to the action of an isotropy subgroup of a fixed element in the representation space of G. In this context the reduction of the discrete Euler–Lagrange equations is shown to lead to th...

متن کامل

Geometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids

We construct Hermitian representations of Lie algebroids and associated unitary representations of Lie groupoids by a geometric quantization procedure. For this purpose we introduce a new notion of Hamiltonian Lie algebroid actions. The first step of our procedure consists of the construction of a prequantization line bundle. Next, we discuss a version of Kähler quantization suitable for this s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005